Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature.

نویسندگان

  • Gokhan Yilmaz
  • Shantel Vital
  • Cigdem Erkuran Yilmaz
  • Karen Y Stokes
  • J Steven Alexander
  • D Neil Granger
چکیده

BACKGROUND AND PURPOSE The therapeutic potential of bone marrow stromal cells (BMSCs) has been demonstrated in different models of stroke. Although it is well established that BMSCs selectively migrate to the site of brain injury, the mechanisms underlying this process are poorly understood. This study addresses the hypothesis that selectins mediate the recruitment of BMSCs into the postischemic cerebral microvasculature. METHODS Focal ischemic stroke was induced by middle cerebral artery occlusion and reperfusion. Cell recruitment was monitored using either fluorescent- or radiolabeled BMSCs detected by intravital microscopy or tissue radioactivity. Mice were treated with either a blocking antibody against P- or E-selectin or with the nonselective selectin antagonist, fucoidin. The role of CD44 in cell recruitment was evaluated using BMSCs from CD44 knockout mice. RESULTS Middle cerebral artery occlusion and reperfusion was associated with a significantly increased adhesion of BMSCs in cerebral venules compared with sham mice. Immunoneutralization of either E- or P-selectin blocked the middle cerebral artery occlusion and reperfusion-induced recruitment of adherent BMSCs. An attenuated recruitment response in the postischemic hemisphere was also noted after fucoidin treatment or administration of CD44-deficient BMSCs. CONCLUSIONS Cerebral vascular endothelium assume a proadhesive phenotype after ischemic stroke that favors the recruitment of BMSCs, which use both P- and E-selectin to home into the infarct site. CD44 may serve as the critical ligand for selectin-mediated BMSC recruitment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia

Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...

متن کامل

Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice

Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

Modulation of Selectin-Mediated Adhesion of Flowing Lymphoma and Bone Marrow Cells by Immobilized SDF-1

The α-chemokine, stromal-derived factor-1 (SDF-1), has been linked to the homing of circulating tumor cells to bone. SDF-1 is expressed by bone microvascular cells and osteoblasts and normally functions to attract blood-borne hematopoietic stem and progenitor cells to marrow. It has been shown that treatment of cancer cells with soluble SDF-1 results in a more aggressive phenotype; however, the...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2011